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CONVECTIVE STRUCTURES IN A THIN LAYER

OF AN EVAPORATING LIQUID UNDER AN AIRFLOW

UDC 532.526; 536.252V. P. Reutov, A. B. Ezersky,

G. V. Rybushkina, and V. V. Chernov

Evolution of convective structures in a thin layer of an evaporating liquid (ethanol) located under a
turbulent boundary layer of an airflow is studied experimentally and theoretically. Evolution of the
structures is examined under conditions of an increased flow velocity. A transition is found from
convective cells formed in the absence of the flow to convective rolls elongated in the streamwise
direction. The theoretical analysis is performed within a two-dimensional model of the flow in the
liquid layer. The boundary conditions on the liquid surface are obtained with the use of self-similar
solutions for mean fields in the airflow. The onset and evolution of a periodic system of rolls are
simulated numerically. Theoretical conclusions are compared with experimental data.
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Introduction. Convective instability caused by evaporation from a liquid surface under an air flow plays
an important role in geophysical and engineering applications. Combined with radiative losses and gradient heat
transfer, evaporation leads to formation of a temperature boundary layer near the surface of water basins, which is
sometimes called the “cold film” [1–3]. The thickness of the temperature boundary layer depends on many factors
and reaches approximately 1 mm [2, 3]. Convective rolls near the surface of water basins with a scale of several
centimeters were first observed by Woodcock (as is described in [3]). The onset of the “cold film” and associated
convective motion were studied by numerical simulations of energy transfer between the ocean and atmosphere
[3–6]. At the same time, it is of interest to study the structures formed in the presence of the “cold film” and
“wind” stresses on the liquid surface. The interest in this issue is also related to a possible convective mechanism
of Langmuir circulations [1, 6].

The problem discussed can be considered as part of the global problem of convection arising in the presence
of shear flows [7]. In this connection, we should note the publication [8], which describes an experimental study of
convective structures in a blown-up layer of silicon oil. In that case, the effects of liquid evaporation were negligibly
small (blowing resulted only in emergence of a shear flow in the liquid), and the inverse temperature distribution was
generated by heating the liquid layer from below. A phenomenological model that describes convective structures
in such a system was developed in [9].

The present paper describes experimental and theoretical studies of convective structures in a thin layer of
an evaporating liquid under an airflow. The use of ethanol (ethyl alcohol) as a working liquid provides a more
intense (as compared to water) cooling of the surface during evaporation and, moreover, does not allow adsorbing
films normally observed on the water surface to form, thus, providing favorable conditions for studying convective
structures.

The theoretical analysis is performed for test conditions used. The system at the initial state is assumed to
be in thermal equilibrium, i.e., the airflow and the liquid have an identical temperature, and the thermal emission
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Fig. 1. Strip-like structures on the liquid surface at U∞ = 1.5 m/sec (the arrow
indicates the airflow direction).

of the liquid is balanced by the radiative heat flux from the ambient space. A two-dimensional model is used to
describe evolution of streamwise convective rolls with axes aligned in the streamwise direction.

1. Experiment. The experiments with blowing of a liquid layer were performed in a low-turbulence wind
tunnel of the Institute of Applied Physics of the Russian Academy of Sciences (30 × 30 cm test section 120 cm
long). A Plexiglas plate containing a rectangular cavity 30 cm long and 19 cm wide was horizontally aligned in the
cross section at half-height of the test section. The cavity was partly (to a depth approximately equal to 5 mm)
filled by ethanol. A small part of the cavity (approximately 2 mm high) was empty to prevent liquid spillage by
the airflow. The liquid in the central part of the cavity 8.2 cm wide was only contacting the airflow. The liquid on
the sides of the cavity was covered by horizontal screens and separated from the flow in the central part by vertical
inserts, which made the flow more uniform (see [8, 10]). The velocity of the airflow far from the plate surface was
measured by an impeller anemometer. The velocity profile and its fluctuations near the surface were measured by
a DISA hot-wire anemometer.

The measurements of the velocity profile showed that a turbulent boundary layer (TBL) is formed directly
ahead of the cavity for free-stream velocities U∞ > 1.5 m/sec. For U∞ = 1.5 m/sec, the TBL thickness was
δ ≈ 2 cm. In addition, there was a positive pressure gradient equal to 408 Pa/m above the liquid surface. The friction
velocity u∗ was determined by the famous Coles’ approximation for the velocity profile in the TBL, combined with
the dependence of the “wake force” on the pressure gradient proposed in [11]. The resultant value was u∗ = 0.05U∞.
The temperature of the liquid surface was measured by a radiometer by a contactless method. Simultaneously, the
temperature was also measured by a thermocouple. The structures formed in the liquid were visualized by aluminum
powder.

The cavity was filled by ethanol in the absence of the airflow, and a cellular structure with hexagon-like cells
was formed on the surface (see [10]). In the presence of the airflow, the convective cells started elongating in the
flow direction, and a system of streamwise elongated strips was formed on the liquid surface at U∞ ≈ 0.7 m/sec
(Fig. 1). Points of branching corresponding to topological defects are clearly seen in the strip system. The mean
half-period of the strips (the size of convective rolls) at the initial stage of liquid cooling is close to the depth of the
layer (5 mm).

Rapid stabilization of the regime with convective rolls was followed by their slow evolution finalized by
degeneration of the rolls in 15–20 min. The time evolution of the surface temperature for water and ethanol is
plotted in Fig. 2 (t = 0 is the starting point of the airflow). The temperature gradually reaches a constant limiting
value because of the overall cooling of the layer and equalization of temperature over the layer thickness. This
process suppresses convective instability and makes the rolls disappear. An increase in the incoming flow velocity
U∞ leads to a certain increase in the limiting temperature, which is more substantial for alcohol.

The velocity of the steady drift flow on the liquid surface vd was measured with the aid of video filming of
motion of the wettable particles of a passive admixture applied onto the surface. At the stage of cell elongation,

470



0 5 10 15 20 25
10

12

14

16

18

20

1

3
2

4

t, min

dT, oC

Fig. 2. Temperature of the liquid surface dT versus time for ethanol (1 and 2) and distilled water
(3 and 4); U∞ = 1.5 (1 and 3) and 2.5 m/sec (2 and 4).

this velocity is rather low (as rough estimates, vd ≈ 0.3 cm/sec at U∞ = 0.7 m/sec). At U∞ = 1.5 m/sec, the value
vd = 3.2 cm/sec was obtained. For the Couette flow induced in the liquid under the action of tangential stresses
in the TBL at U∞ = 1.5 m/sec, the calculations predict vd = 2.6 cm/sec [8] (see also Sec. 3). At flow velocities
higher than 4.5 m/sec, surface waves were generated in the downstream part of the cavity, owing to the evolution
of “wind” instability, which prevented visualization of convective structures.

Such a transition from cellular convection to convective rolls was observed in the layer of a non-evaporating
liquid (silicon oil), where the temperature inversion was provided by heating from below [8, 9]. In this case, if the
flow velocity was fixed, a steady-state pattern of cells or rolls was established, supported by heat transfer from the
heater. Moreover, the cells had a clearly expressed hexagonal shape. Blurring of the boundaries of hexagonal cells
arising during evaporation is apparently caused by unsteadiness of evaporation in the absence of the airflow and by
a small thickness of the temperature boundary layer (“cold film”). It should be noted that a similar picture of rolls
structures with a period of 2.5 cm was obtained under natural conditions in [9].

2. Theoretical Model. Based on the estimates made in [8], we confine our theoretical considerations to
the model of thermogravitational convection (Rayleigh–Benard convection), which prevails in open water basins.
The results of the experiment described in Sec. 1 suggest that a regime of generation of streamwise convective rolls
is established if the airflow velocity is sufficiently high. Therefore, we consider a two-dimensional model where the
roll axes are aligned in the streamwise direction.

2.1. Equations of the Problem and Boundary Conditions on the Layer Bottom. Let the axes x, y, and z

of the right-hand Cartesian system of coordinates be directed along the airflow, perpendicular to the airflow, and
vertically upward (in the direction opposite to the force of gravity). If there are no disturbances inside the layer
0 < z < H (H is the layer depth), the “wind” flow generates a steady plane-parallel flow. In this case, convective
motions with orientation of the roll axes in the x direction are possible (streamwise rolls). The equations for the
liquid layer are written in dimensionless form in terms of the stream function ψ, vorticity Ω, and temperature
deviation θ [12]:
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Here Δ = ∂2/∂y2 + ∂2/∂z2, R = α0gδTH
3/(ν0χ0) is the Rayleigh number, Pr = ν0/χ0 is the Prandtl number, ν0 is

the kinematic viscosity of the liquid, χ0 is the thermal diffusivity, α0 is the thermal expansion coefficient, g is the
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acceleration of gravity, δT is the scale of temperature variation, v = (u, v, w) is the flow velocity vector, v = ∂ψ/∂z,
w = −∂ψ/∂y, and Ω = −(rotv)x. The quantities with the length dimension are normalized to H , and the time is
normalized to H2/χ0 [12]. The dimensionless temperature deviation is θ = (T − T0)/δT [T0 is the initial absolute
temperature of air and liquid and T (y, z, t) is the current absolute temperature]. In the presence of a shear flow,
the disturbances of the streamwise velocity differ from zero, but they do not affect the two-dimensional flow in the
plane (y, z), which is actually autonomous.

We consider disturbances periodic in terms of y, representing them in the form of truncated Fourier series.
For a convective flow satisfying the relations of symmetry ψ(y, z, t) = −ψ(−y, z, t) and θ(y, z, t) = θ(−y, z, t), the
solution of Eqs. (1) and (2) is written in the form

ψ =
M∑

n=1

An(z, t) sin (nk1y), Ω =
M∑

n=1

Kn(z, t) sin (nk1y), (4)

θ = θ̄(z, t) +
M∑

n=1

Bn(z, t) cos (nk1y),

where An, Bn, and Kn are the real amplitudes of the harmonic numbered n, k1 is the wavenumber of the first
harmonic, and M is the number of harmonics taken into account. On the layer bottom, we impose the thermal
insulation condition for temperature and the non-penetration and no-slip conditions for velocity:

z = 0:
∂θ̄

∂z
= 0,

∂Bn

∂z
= 0, An = 0,

∂An

∂z
= 0, n = 1, 2, . . . ,M. (5)

2.2. Boundary Conditions for the Mean Temperature on the Surface in the Presence of the Airflow. The
liquid surface lies under the TBL of the airflow. Correspondingly, free convection in the layer induces forced
convection in the TBL. The joint solution of the equations for the liquid layer and convection in air makes numerical
simulations rather complicated. In what follows, the structure of disturbances in the airflow is described by the linear
approximation for both mean fields and fields oscillating in terms of y. In addition, the evolution of disturbances is
assumed to be quasi-steady (derivatives with respect to time are neglected), because the calculations predict that
convective instability is rapidly saturated, and then there follows quasi-steady evolution of a system of rolls (see
Sec. 3). In calculating the fields in the airflow, we use a “quasi-laminar” model of the TBL flow, where a laminar
flow with an identical mean velocity profile is put into correspondence to the turbulent flow.

On the liquid surface, we impose the conditions of a “rigid top,” continuity of temperature, no-slip conditions,
and continuity of shear stress in the form [12, 13]
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where ρ0 is the liquid density and ρa and νa are the air density and kinematic viscosity, respectively. Dimensionless
variables are used in Eq. (6) and further in this section (if not indicated otherwise). On the liquid–air interface, the
heat-flux balance equation acquires the form [1, 2]
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(
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+ LV γ[ρϕ(T ) − ρ(T )] + 4εσT 3

0 θ
)∣∣∣
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, (7)

where κ0 and κa are the thermal conductivities of the liquid and air, respectively, LV is the latent heat of evap-
oration, ρϕ(T ) is the density of saturated vapor at a temperature T , ρ(T ) is the vapor density, γ is the rate of
evaporation into vacuum, σ is the Stefan–Boltzmann constant, and ε is the radiant emittance of the liquid. In
addition to gradient heat fluxes, Eq. (7) contains heat fluxes caused by evaporation and distortion of the radiative
balance due to liquid-surface cooling. Note that radiative effects on the sea surface play an important role [2].
The heat flux due to evaporation in Eq. (7) is determined by the formula of the kinetic theory [14, p. 63]. The
dependence of ρϕ on temperature has the form [15, p. 200]

ρϕ(T ) = ρϕ(T0)
T0

T
exp

[
λϕ

( 1
T0

− 1
T

)]
, (8)
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where λϕ = LV gm/R∗ (gm is the molecular weight of the liquid) and R∗ is the universal gas constant. In the
working range of temperatures, we replace Eq. (8) by its linear approximation

ρϕ = ρϕ(T0)[1 + kc(T − T0)(λϕ − T0)/T 2
0 ] (9)

(kc is a correcting coefficient). By comparing the plots of the functions (8) and (9) with typical values of the
parameters (see Sec. 3), we find that kc = 0.8 ensures the relative error of dependence (9) within 7% in the entire
working range of temperatures (the error equals zero for kc = 1 and T → T0 and 35% at the edge of the working
range of temperatures).

The density of saturated vapor is substantially lower than the density of air (at standard pressure and
temperature of 20◦C, ρϕ = 0.11 g/cm3 for alcohol); therefore, the vapor density ρ(x, y, z, t) is described by the
linear advection-diffusion equation (see [16])

∂ρ

∂t
+ Ua(z, x)

∂ρ

∂x
= DΔρ. (10)

Here D is the coefficient of diffusion of vapor in air and Ua(z, x) is the airflow velocity profile. As the estimates of
the problem parameters made in Sec. 3 show that the changes in temperature and vapor concentration occur in the
near-wall (buffer) region of the TBL, we use the linear approximation Ua(z, x) = (u2

∗/νa)(z −H), where u∗(x) is
close to constant. The velocity of the drift flow on the layer surface can be neglected (see Sec. 3). Typical changes
in the mean temperature and vapor density in the airflow direction have a scale l of the order of the cavity length,
which is significantly greater than the vertical scales of vapor diffusion and heat transfer in the TBL. Taking this
circumstance into account and using Eq. (10), we write the equation for the steady profile of the mean vapor density
ρ̄(z, x) in dimensionless coordinates X = x/l and Y = (z−H)/lD, where lD = (νalD/u

2
∗)

1/3 is the scale of diffusion.
Presenting the solution of this equation in the form ρ̄ = [ρϕ(Ts) − ρ∞]F (X,Y ) + ρ∞, where Ts = T |Y =0 is the
temperature on the layer surface and ρ∞ is the vapor density in the ambient air, we obtain the equation

Y
∂F

∂X
=
∂2F

∂Y 2
. (11)

The boundary condition for Eq. (11) on the plane Y = 0 means that the mass flux due to evaporation equals the
diffusion mass transfer. Supplementing this condition by an obvious boundary condition “at infinity,” we obtain

F − 1 = β
∂F

∂Y

∣∣∣
Y =0

, F
∣∣∣
Y →∞

→ 0, (12)

where β = D/(γlD) � 1 is a small parameters characterizing the ratio of the diffusion rate to the rate of evaporation
into vacuum. The heat flux due to evaporation in Eq. (7) is proportional to 1 − F and equals zero in the zeroth
approximation of β. In this approximation, F satisfies Eq. (11) with the boundary conditions F |Y =0 = 1 and
F |Y →∞ = 0. Such a boundary-value problem has a self-similar solution of the form F = Γ(1/3, ξ3/9)/Γ(1/3), where
ξ = Y X−1/3; the functions Γ with one and two arguments are the gamma-function and incomplete gamma-function,
respectively. As ξ → ∞, the function F (ξ) monotonically decreases from 1 to 0 (F = 0.035 already at ξ = 2.5). The
heat flux due to evaporation jV is found by substituting the solution for F in the zeroth approximation into the
right side of the first boundary condition (12): jV = d1(D/lD)[ρϕ(Ts)−ρ∞]X−1/3. Here d1 = (−dF/dξ)

∣∣∣
ξ=0

≈ 0.54.

This self-similar solution was obtained for a uniform (in terms of x) distribution ρϕ(T ) and, hence, for a
constant temperature Ts. A self-similar solution with a constant heat flux is also possible. The solution with
a constant temperature Ts was chosen because the function ρϕ has a temperature-independent component [see
Eq. (9)]. In addition, a constant distribution of Ts in the downstream direction was confirmed experimentally.
Thus, the vapor density is close to the saturated vapor density near the surface and tends to ρ∞ with distance from
the surface.

The problem of determining the mean temperature profile in the TBL is posed similarly to the above-
considered problem for vapor density [see Eq. (10)]. The solution of this problem can be presented as T = (Ts −
T0)F (X,Y ) + T0; in this case, Y = (z − H)/lT [lT = (νalχa/u

2
∗)

1/3 and χa is the thermal diffusivity of air].
As F satisfies the boundary conditions F |Y =0 = 1 and F |Y →∞ = 0, the solution of the problem considered is the
function F (ξ) found above. Then, for the gradient heat flux jT [the first term in the right side of Eq. (7)], we obtain
jT = (d1κa/lT )(Ts − T0)X−1/3.

For matching the resultant solutions with the two-dimensional model of convective rolls in the liquid layer,
we put X = 1 in the expressions for jV and jT . The matching coordinate is determined as x = l. Substituting jV
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and jT into Eq. (7), we obtain a closed boundary condition for the mean temperature on the layer surface. The
scale of temperature variation is introduced as δT = d1DLV Hρϕ(T0)(1 − λρ)/(lDκ0). Here λρ = ρ∞/ρϕ(T0) is the
humidity of the ambient air, determined from the concentration of vapor of the evaporating liquid. This allows us
to write the boundary condition for the mean temperature in dimensionless form as

z = 1 − 0:
∂θ̄

∂z
= −bθ̄− 1, (13)

where b = sV +sT +sR is the coefficient of heat transfer from the surface. The quantities sV = kc(λϕ −T0)δT/[(1−
λρ)T 2

0 ], sT = d1κaH/(κ0lT ), and sR = 4σεT 3
0H/κ0 determine the contributions of the temperature dependence of

evaporation, gradient heat transfer, and violation of the radiative balance to the heat transfer from the surface.
Note that −1 appears in the right side of Eq. (13) because of the above-made choice of the temperature

scale. The heat flux due to evaporation equal to −1 is the heat flux due to evaporation at the initial time (when
θ̄ = 0). Therefore, δT is the temperature difference over the layer thickness with a linear profile of temperature,
where the heat flux inside the layer coincides with the heat flux into air at the initial time.

2.3. Boundary Conditions for Oscillating Components of Hydrodynamic Fields. In determining the oscillating
(over the y coordinate) components of the fields, we use the same assumptions as in Sec. 2.2; moreover, we neglect
the derivatives with respect to x. Using Eqs. (1) and (2) supplemented by the advection-diffusion equation for
vapor density, we present their solution in the form (4) and linearize the resultant equations with respect to the
mean profiles of temperature and vapor density found in Sec. 2.2 [the solution of the equation for vapor density
is constructed in the same form as the solution for temperature (4)]. Using only the linear approximation of the
function F , we assume that F (ξ)

∣∣∣
X=1

≈ 1− d1Y . As a result, we obtain equations for the amplitudes of harmonics

in air with constant coefficients. Solving this system with allowance for the boundary conditions (6) and (7), we
can obtain effective boundary conditions on the liquid surface, which close the system of equations for the liquid
layer.

The results of calculations with the values of parameters corresponding to conditions of experiments per-
formed (see Sec. 3) show that the effective boundary conditions can be replaced, without losing accuracy, by simpler
relations, which have the following form in dimensionless variables:

z = 1 − 0:
dBn

dz
= −bBn,

d2An

dz2
= 0, An = 0. (14)

The first equation in (14) is the generalization of the boundary condition (13) to the case of full temperature
deviation θ, the second one implies the absence of oscillating shear stresses, and the third equation means a
motionless plane boundary. The use of conditions (14) allows us to avoid the problem of determining oscillating
fields in air. The calculations show (see Sec. 3) that the profiles of harmonics of the stream function and temperature
in this case are close to those obtained with the use of full effective boundary conditions. A small difference in the
profiles of harmonics of temperature (less than 5%) is noted only in an immediate vicinity of the surface. Note that
the first condition in (14) can be replaced approximately with the same error by the condition of thermal insulation
(dBn/dz = 0). The calculations of the flow structure and its evolution in time with the use of full and simplified
boundary conditions also yield similar results.

3. Results of Numerical Simulations. Physical parameters of alcohol, air, and alcohol vapor in air at a
temperature of 20◦C and standard pressure were taken from appropriate tables. The dimensionless parameters for
numerical simulations were determined at U∞ = 1.5 m/sec, u∗/U∞ = 0.05, H = 4.6 mm, l = 15 cm (half-length
of the cavity), and humidity λρ = 0. These data correspond to R = 60,140 and b = 0.68. The Prandtl number for
alcohol under these conditions is Pr = 16.6 [16]. Note that the coefficient in Eq. (8) is λϕ = 5120, and the time
scale is H2/χ0 = 3.7 min.

The scales of the diffusion and thermal boundary layers in the airflow, normalized to the viscous length scale
for the TBL, are lDu∗/νa = 7.85 and lTu∗/νa = 10.1. The thickness of the buffer region of the TBL on a smooth
surface in the same units is usually assumed to be 30 [2]. Assuming that X = 1 (ξ = Y ) and taking into account
the behavior of the function F (ξ), we find that heat and vapor diffusion occurs in the buffer region of the TBL. This
allows us to use the linear approximation for the airflow velocity profile (see Sec. 2.2). Note also that the increment
of flow velocity on the scales lD and lT is substantially greater than the velocity of surface drift in the liquid. For
this reason, the latter can be neglected in Eq. (11).
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Equations (1) and (2) with the boundary conditions (5) and (13) admit a solution in the form of a vertically
uniform steady-state temperature distribution θ̄(z) = θst = −1/b, which is obviously stable and corresponds to
cooling of the entire liquid layer. The steady-state temperature is also observed to stabilize in the experiment
(see Fig. 2). The calculations yield the following values of parameters: sV = 0.38, sT = 0.166, sR = 0.131, and
θst = −1.48. Thus, in determining θst, the dependence of saturated vapor density on temperature sV is important,
though the total contribution of sT and sR is also significant. The difference between the initial temperature T0

and the absolute temperature of the layer can be presented as T0 − Tst = (1 − λρ)T 2
0 /[(1 + s′T + s′R)kc(λϕ − T0)],

where s′T = sT /sV , s′R = sR/sV , and Tst = T0 + δT θst is the absolute steady-state temperature of the layer. If
s′T → 0 and s′R → 0, then the decrease in temperature T0−Tst during layer cooling is completely determined by the
dependence of saturated vapor density on temperature. It follows from the estimates made above that the limiting
temperature in the experiment is expected to weakly depend on flow velocity, which is consistent with data plotted
in Fig. 2.

Substituting Eq. (4) into Eqs. (1) and (2), we obtain an evolutionary boundary-value problem in partial
derivatives with respect to t and z for the amplitudes of harmonics and mean temperature with the boundary
conditions (5), (13), and (14). In the present paper, we consider only periodic solutions of this problem containing
two convective rolls in the period. In numerical simulations, the period of the solution was set in accordance with
experimental data (it was assumed that k1 = 3, which corresponds to the period of rolls equal to 2.1H). To obtain a
numerical solution, we used a mesh uniform in the z direction, and the derivatives with respect to z were replaced by
second-order differences. Equations in ordinary derivatives with respect to t were written for working nodes of the
mesh numbered n = 1, 2, . . . , N . The values of the variables in the edge nodes n = 0, N + 1 were determined from
the boundary conditions at z = 0 and z = 1. A large system of ordinary differential equations with respect to t was
integrated by the fourth-order Runge–Kutta method with a constant step. The second equation in system (1) was
solved by the differential sweep method. Most calculations were performed with N = 100, and some calculations
were performed with N = 200. The number of harmonics in most calculations was M = 6. Similar results were
obtained for other values of R, k1, and M . At the initial time, a uniform mean temperature profile θ̄ = 0 and a
small first harmonic of the stream function A1 = 10−3 sin (mπz) (m is an integer) were specified. The remaining
coefficients An and all coefficients Bn were assumed to be zero. The fields at the stage of quasi-steady evolution of
the roll structures were found to be almost identical for m = 1, 2, and 3.

The calculated results are plotted in Figs. 3–5. At the initial stage of the process (t < 0.15), intense generation
of the rolls is observed; the maximum amplitude of the first harmonic of the stream function reaches A1 ≈ 45. Then,
the generation intensity drastically decreases, and the amplitudes of harmonics monotonically decrease to zero at
t > 0.3 (the amplitude of velocity on the layer surface is v ≈ 40 at t = 0.5). This corresponds to the stage of
quasi-steady evolution of the rolls, when convective instability has been already stabilized and all changes in the
flow are caused by cooling of the liquid layer. An analysis of the mean temperature profile behavior showed that
liquid cooling from the surface leads first to formation of a temperature profile with a large (commensurable to
unity) slope over the entire layer thickness. As the Rayleigh number is high, intense generation of convective rolls
is observed.

Figure 3 shows the mean temperature profiles, which can be used to elucidate the evolution of the “cold film”
and quasi-steady cooling of the layer. The “cold film” is characterized by a small but abrupt decrease in temperature
near the layer surface z = 1. In the remaining part of the layer, the temperature changes smoothly and insignificantly.
The limiting value of temperature in a uniformly cooled layer coincides with the value of θst given above. The
temperature scale is δT = 8.5◦C, and the limiting decrease in the layer temperature is T0−Tst = 12.5◦C. As is seen
in Fig. 2, in the experiment with alcohol and U∞ = 1.5 m/sec, cooling was somewhat smaller (approximately 9◦C).
The dimensionless time of cooling is 5, i.e., 18.5 min, which is in good agreement with experimental data plotted
in Fig. 2. The time evolution of surface temperature (not shown here) is also in qualitative agreement with the
data in Fig. 2. The dimensionless thickness of the “cold film” is approximately 0.2, which corresponds to 1 mm.
At t = 0.5, the temperature difference on the “cold film” is 0.075 (0.64◦C). These estimates are close to available
data for water basins [2].
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Fig. 3. Mean temperature profiles inside the liquid layer under the airflow at different times
(R = 60,140, Pr = 16.6, b = 0.68, and k1 = 3): t = 0.75 (1), 1.25 (2), and 1.75 (3).

Fig. 4. Dimensionless heat flux in the z direction (curve 1) and its molecular component
(curve 2) and dynamic component (curve 3).

According to Eq. (2), the expression for the normalized heat flux toward the surface is

Jz = −∂θ̄
∂z

+ 〈w̃θ̃〉, (15)

where the tilde corresponds to the components of temperature θ and vertical velocity w oscillating over y; 〈w̃θ̃〉 is
the mean value averaged over the period of spatial oscillations. Figure 4 shows the total heat flux (15) and its
molecular and dynamic components [determined, respectively, by the first and second terms in the right side of
Eq. (15)] versus the z coordinate. Prevailing of the molecular component near the surface is responsible for the
large temperature gradient in the “cold film,” while the large dynamic thermal conductivity generated inside the
layer by convective motions restricts the film thickness. The distributions in Fig. 4 are similar to those known for
turbulent boundary layers of different origin (e.g., for the turbulent flux of momentum in the TBL near the wall
[2]). Thus, the small thickness and stability of the “cold film” are caused by the presence of convective structures
responsible for higher dynamic thermal conductivity in the main part of the liquid layer.

Figure 5 shows the isotherms and the streamlines in the flow. The streamlines become compressed in regions
of downward motion of the cold liquid and expand in regions of upward motion of the warm liquid. Thus, the cold
liquid goes down in the form of thin jets, and this occurs faster than the warm liquid goes upward. The cold liquid
goes downward under the lines of convergence of the surface flow. These lines pass through the points z = 1, y = 0,
2.1, and 4.2 in Fig. 5 (white stripes in Fig. 1 formed by powder particles). The warm liquid goes upward under the
lines of divergence. These lines pass through the points z = 1, y = 1.05 and 3.15 in Fig. 5 (dark stripes in Fig. 1).

Equation (3) for the streamwise component of velocity was solved with the boundary conditions ∂u/∂z =
ρau

2∗H2/(ρ0χ0ν0) ≡ C0 at z = 1 and u = 0 at z = 0. This problem is a linear boundary-value problem with variable
coefficients, which has a steady-state solution of the form u = C0z in the absence of convection. Therefore, the
relative change in the mean flow velocity δū = ū/C0 − z is independent of C0. For the values of parameters used
above, C0 = 1140. The function δū(z) is monotonic; at t = 0.5, it has a minimum on the layer surface (δū = −0.06
at z = 1) and a maximum on the bottom [δū(0) = 0 at z = 0]. The streamwise velocity on the surface u(t, y, z)|z=1

has a maximum value on the lines of convergence and a minimum value on the lines of divergence. Its crossflow
oscillations at t = 0.5 reach 20% of velocity in the absence of convection.
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To estimate the dependence of the calculation results on the matching coordinate x = l (see Sec. 2.2), we
performed calculations with l = 9 and 23 cm (which covers almost the entire region of the liquid surface in Fig. 1).
The values for l = 9 cm were R = 71,300, b = 0.78, δT = 10◦C, and T0 − Tst = 12.9◦C. The corresponding values
for l = 23 cm were R = 52,150, b = 0.6, δT = 7.3◦C, and T0 − Tst = 12.1◦C. As determining δT depends on l (see
Sec. 2.2), we first passed to a fixed scale δT = 1◦C and then compared the calculated mean temperatures. The
calculations for different values of l were compared in the time interval 0.5 < t < 3 (except for the time intervals of
the transitional regime and small values of the quantities considered). For l = 9 and 23 cm, the relative deviations
of temperature on the surface layer, the temperature difference in the “cold film,” and the maximum amplitude of
the first harmonic of the stream functions from the values of these quantities calculated at l = 15 cm were within 10
and 8%, respectively. The relative deviations of the amplitude of the second harmonic were considerably smaller.
Thus, the calculated results show that the hydrodynamic fields only weakly depend on the matching coordinate.

The fields of temperature and velocity of the convective flow in Fig. 5 agree qualitatively with those obtained
by Blokhina and Ordanovich [6] who examined convection on the background of small-scale turbulence, aimed at
studying the Langmuir circulations (lower effective Rayleigh and Prandtl numbers were used there). Note that the
temperature on the layer bottom was fixed in [6], which results in heat inflow from the lower boundary of the layer
and establishment of steady-state rolls.

Conclusions. Evolution of convective structures formed in a cavity of small volume filled by liquid (ethanol)
under an airflow with increasing velocity is studied. A transition from hexagonal cells to streamwise convective rolls
is found. Evaporation of the liquid in the presence of convective structures leads to a decrease in liquid temperature
to a constant value.

Evolution of two-dimensional rolls is studied theoretically and numerically. It is demonstrated that the main
effect on the limiting temperature in the cooled layer under the test conditions used is exerted by the dependence
of saturated vapor density on temperature. The calculations prove that the boundary conditions for an oscillating
flow on the surface of the liquid layer can be replaced, without losing accuracy, by simpler relations, which do not
require the oscillating fields in air to be calculated.

The main specific features of the flow typical of the experiments performed are determined within the
framework of the numerical solution of the problem. It is shown that convective structures play an important role
in formation of a thin temperature boundary layer near the surface.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-05-64627).
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